enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Regular tetrahedra alone do not tessellate (fill space), but if alternated with regular octahedra in the ratio of two tetrahedra to one octahedron, they form the alternated cubic honeycomb, which is a tessellation. Some tetrahedra that are not regular, including the Schläfli orthoscheme and the Hill tetrahedron, can tessellate.

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    The tessellations created by bonded brickwork do not obey this rule. Among those that do, a regular tessellation has both identical [a] regular tiles and identical regular corners or vertices, having the same angle between adjacent edges for every tile. [14] There are only three shapes that can form such regular tessellations: the equilateral ...

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    Star polygons that can only exist as spherical tilings, similarly to the monogon and digon, may exist (for example: {3/2}, {5/3}, {5/4}, {7/4}, {9/5}), however these have not been studied in detail. There also exist failed star polygons, such as the piangle, which do not cover the surface of a circle finitely many times. [8]

  6. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    Within that plane, every triangle, irrespective of regularity, will tessellate. In contrast, regular pentagons do not tessellate. However, irregular pentagons, with different sides and angles can tessellate. There are 15 irregular convex pentagons that tile the plane. [6] Polyhedra are the three dimensional correlates of polygons.

  7. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

  8. Rep-tile - Wikipedia

    en.wikipedia.org/wiki/Rep-tile

    Such a shape necessarily forms the prototile for a tiling of the plane, in many cases an aperiodic tiling. A rep-tile dissection using different sizes of the original shape is called an irregular rep-tile or irreptile. If the dissection uses n copies, the shape is said to be irrep-n. If all these sub-tiles are of different sizes then the tiling ...

  9. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    This makes it impossible to generate a covered plane given the notation alone. And second, some tessellations have the same nomenclature, they are very similar but it can be noticed that the relative positions of the hexagons are different. Therefore, the second problem is that this nomenclature is not unique for each tessellation.