Search results
Results from the WOW.Com Content Network
The crystal lattice parameters a, b, and c have the dimension of length. The three numbers represent the size of the unit cell , that is, the distance from a given atom to an identical atom in the same position and orientation in a neighboring cell (except for very simple crystal structures, this will not necessarily be distance to the nearest ...
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics , where the atoms of a crystal automatically form a lattice.
The Hubbard model is based on the tight-binding approximation from solid-state physics, which describes particles moving in a periodic potential, typically referred to as a lattice. For real materials, each lattice site might correspond with an ionic core, and the particles would be the valence electrons of these ions.
[63] [64] Lennard-Jones potential can typically describe the lattice parameters, surface energies, and approximate mechanical properties. [65] Many-body potentials often contain tens or even hundreds of adjustable parameters with limited interpretability and no compatibility with common interatomic potentials for bonded molecules.
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice.The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.
The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice.It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid.
The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ). The positions of particles inside the unit cell are described by the fractional coordinates ( x i , y i , z i ) along the cell edges, measured from a reference ...
The DMFT treatment of lattice quantum models is similar to the mean-field theory (MFT) treatment of classical models such as the Ising model. [6] In the Ising model, the lattice problem is mapped onto an effective single site problem, whose magnetization is to reproduce the lattice magnetization through an effective "mean-field".