enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    The occurrence of the Gaussian probability density 1 = e −x 2 in repeated experiments, in errors of measurements, which result in the combination of very many and very small elementary errors, in diffusion processes etc., can be explained, as is well-known, by the very same limit theorem, which plays a central role in the calculus of probability.

  3. Central limit theorem for directional statistics - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem_for...

    The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.

  4. Law of the iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_iterated_logarithm

    The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:

  5. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3

  6. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  7. Lindeberg's condition - Wikipedia

    en.wikipedia.org/wiki/Lindeberg's_condition

    In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.

  8. Large deviations theory - Wikipedia

    en.wikipedia.org/wiki/Large_deviations_theory

    The central limit theorem can provide more detailed information about the behavior of than the law of large numbers. For example, we can approximately find a tail probability of M N {\displaystyle M_{N}} – the probability that M N {\displaystyle M_{N}} is greater than some value x {\displaystyle x} – for a fixed value of N {\displaystyle N} .

  9. Gaussian measure - Wikipedia

    en.wikipedia.org/wiki/Gaussian_measure

    One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable X {\displaystyle X} is obtained by summing a large number N {\displaystyle N} of independent random variables with variance 1, then X {\displaystyle X} has variance N {\displaystyle N} and ...