Search results
Results from the WOW.Com Content Network
UC Merced Land Use Dataset These images were manually extracted from large images from the USGS National Map Urban Area Imagery collection for various urban areas around the US. This is a 21 class land use image dataset meant for research purposes. There are 100 images for each class. 2,100 Image chips of 256x256, 30 cm (1 foot) GSD
Lidar (/ ˈ l aɪ d ɑːr /, also LIDAR, LiDAR or LADAR, an acronym of "light detection and ranging" [1] or "laser imaging, detection, and ranging" [2]) is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver.
Atmospheric lidar is a class of instruments that uses laser light to study atmospheric properties from the ground up to the top of the atmosphere. Such instruments have been used to study, among other, atmospheric gases, aerosols, clouds, and temperature.
How Cars Use Lidar to Map for Hands-Free Driving BMW For a hands-free driving system to keep a vehicle safely in its lane, the software first needs to know where that lane is and some information ...
A national lidar dataset refers to a high-resolution lidar dataset comprising most—and ideally all—of a nation's terrain. Datasets of this type typically meet specified quality standards and are publicly available for free (or at nominal cost) in one or more uniform formats from government or academic sources.
LiDAR system emits pulsed and continuous-wave lasers to acquire 3-D information. The laser scanner is the main component of LiDAR. Lasers with a wavelength of 550-600 nm are used on a ground-based system (handheld laser scanning and terrestrial laser scanning), whereas airborne systems use lasers with 1000-1600 nm wavelength. [19]
The purpose of Starfire is to conduct research to use adaptive optics to remove the effects of scintillation (atmospheric turbulence). [1] Turbulence interferes with laser beam integrity over distances. Lasers are being used for long-distance high-bandwidth communications and accuracy in air-to-air laser connectivity is important for data ...
The Buckeye system relies on two major components: the electro-optical (EO) imaging system and the LIDAR system. The EO system utilizes a CCD camera and an embedded imaging computer to obtain the desired images while accounting for the movement of the aerial system to which it is attached.