Search results
Results from the WOW.Com Content Network
The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.
For example, in the real numbers, the squaring operation only produces non-negative numbers; the codomain is the set of real numbers, but the range is the non-negative numbers. Operations can involve dissimilar objects: a vector can be multiplied by a scalar to form another vector (an operation known as scalar multiplication ), [ 13 ] and the ...
Another method is multiplication by 3. A number of the form 10x + y has the same remainder when divided by 7 as 3x + y. One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: ...
With the chisanbop method it is possible to represent all numbers from 0 to 99 with the hands, rather than the usual 0 to 10, and to perform the addition, subtraction, multiplication and division of numbers. [4] The system has been described as being easier to use than a physical abacus for students with visual impairments. [5]
A multiplication by a negative number can be seen as a change of direction of the vector of magnitude equal to the absolute value of the product of the factors. When multiplying numbers, the magnitude of the product is always just the product of the two magnitudes. The sign of the product is determined by the following rules:
Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
4 − 5 × 6: The multiplication must be done first, and the formula has to be rearranged and calculated as −5 × 6 + 4. So ± and addition have to be used rather than subtraction. When + is pressed, the multiplication is performed. 4 × (5 + 6): The addition must be done first, so the calculation carried out is (5 + 6) × 4.