enow.com Web Search

  1. Ad

    related to: what is rational mapping in geometry

Search results

  1. Results from the WOW.Com Content Network
  2. Rational mapping - Wikipedia

    en.wikipedia.org/wiki/Rational_mapping

    In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible .

  3. Birational geometry - Wikipedia

    en.wikipedia.org/wiki/Birational_geometry

    In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.

  4. Morphism of algebraic varieties - Wikipedia

    en.wikipedia.org/wiki/Morphism_of_algebraic...

    If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.

  5. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.

  6. Map (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Map_(mathematics)

    A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]

  7. Julia set - Wikipedia

    en.wikipedia.org/wiki/Julia_set

    There has been extensive research on the Fatou set and Julia set of iterated rational functions, known as rational maps. For example, it is known that the Fatou set of a rational map has either 0, 1, 2 or infinitely many components. [3] Each component of the Fatou set of a rational map can be classified into one of four different classes. [4]

  8. Rational variety - Wikipedia

    en.wikipedia.org/wiki/Rational_variety

    Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.

  9. Rational representation - Wikipedia

    en.wikipedia.org/wiki/Rational_representation

    In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map of algebraic varieties. Finite direct sums and products of rational representations are rational.

  1. Ad

    related to: what is rational mapping in geometry