Search results
Results from the WOW.Com Content Network
the design drain spacing (L) can be found from the equation in dependence of the drain depth (Dd) and drain radius (r). Drainage criteria One would not want the water table to be too shallow to avoid crop yield depression nor too deep to avoid drought conditions. This is a subject of drainage research.
MIKE SHE is a watershed-scale physically based, spatially distributed model for water flow and sediment transport. Flow and transport processes are represented by either finite difference representations of partial differential equations or by derived empirical equations. The following principal submodels are involved:
Watershed delineation is the process of identifying the boundary of a watershed, also referred to as a catchment, drainage basin, or river basin. It is an important step in many areas of environmental science, engineering, and management, for example to study flooding, aquatic habitat, or water pollution.
According to Montgomery and Dietrich’s equation, drainage density is a function of vertical hydraulic conductivity. Coarse-grained sediment like sand would have a higher hydraulic conductivity and are predicted by the equation to form a relatively higher drainage density system than a system formed by finer silt with a lower hydraulic ...
An example of a criterion factor is the depth of the water table: A drainage system influences this depth; the relation between drainage system design and depth of water table is mainly physical and can be described by drainage equations, in which the drainage requirements are to be found from a water balance. [1]
In geotechnical engineering, watertable control is the practice of controlling the height of the water table by drainage.Its main applications are in agricultural land (to improve the crop yield using agricultural drainage systems) and in cities to manage the extensive underground infrastructure that includes the foundations of large buildings, underground transit systems, and extensive ...
Spacing equations of subsurface drains and the groundwater energy balance applied to drainage equations [5] are examples of two-dimensional groundwater models. Three-dimensional models like Modflow [6] require discretization of the entire flow domain. To that end the flow region must be subdivided into smaller elements (or cells), in both ...
Vertical drainage systems are drainage systems using pumped wells, either open dug wells or tube wells. Map of a well field for subsurface drainage with radial flow across concentrical cylinders representing the equipotentials. Both systems serve the same purposes, namely water table control and soil salinity control. Both systems can ...