Search results
Results from the WOW.Com Content Network
Main-sequence stars vary in surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars – in particular, newly-formed white dwarfs – can have surface temperatures above 100,000 K. [3] Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest.
A B-type main-sequence star (B V) is a main-sequence (hydrogen-burning) star of spectral type B and luminosity class V. These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. [1] B-type stars are extremely luminous and blue.
A-type star In the Harvard spectral classification system, a class of main-sequence star having spectra dominated by Balmer absorption lines of hydrogen. Stars of spectral class A are typically blue-white or white in color, measure between 1.4 and 2.1 times the mass of the Sun, and have surface temperatures of 7,600–10,000 kelvin.
The study of stars and stellar evolution is fundamental to our understanding of the Universe. The astrophysics of stars has been determined through observation and theoretical understanding; and from computer simulations of the interior. [99] Star formation occurs in dense regions of dust and gas, known as giant molecular clouds.
A multiple star system consists of two or more stars that appear from Earth to be close to one another in the sky. [dubious – discuss] This may result from the stars actually being physically close and gravitationally bound to each other, in which case it is a physical multiple star, or this closeness may be merely apparent, in which case it is an optical multiple star [a] Physical multiple ...
Stars are not spread uniformly across the universe but are normally grouped into galaxies along with interstellar gas and dust. A typical large galaxy like the Milky Way contains hundreds of billions of stars. There are more than 2 trillion (10 12) galaxies, though most are less than 10% the mass of the Milky Way. [107]
Examples of star-forming regions are the Orion Nebula, the Rosette Nebula and the Omega Nebula. Feedback from star-formation, in the form of supernova explosions of massive stars, stellar winds or ultraviolet radiation from massive stars, or outflows from low-mass stars may disrupt the cloud, destroying the nebula after several million years.
The first known globular cluster, now called M 22, was discovered in 1665 by Abraham Ihle, a German amateur astronomer. [4] [5] [6] The cluster Omega Centauri, easily visible in the southern sky with the naked eye, was known to ancient astronomers like Ptolemy as a star, but was reclassified as a nebula by Edmond Halley in 1677, [7] then finally as a globular cluster in the early 19th century ...