Search results
Results from the WOW.Com Content Network
In computer programming, array slicing is an operation that extracts a subset of elements from an array and packages them as another array, possibly in a different dimension from the original. Common examples of array slicing are extracting a substring from a string of characters, the " ell " in "h ell o", extracting a row or column from a two ...
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
The major changes in this release include 1) the serialization order of N-D array elements changes from column-major to row-major, 2) _ArrayData_ construct for complex N-D array changes from a 1-D vector to a two-row matrix, 3) support non-string valued keys in the hash data JSON representation, and 4) add a new _ByteStream_ object to serialize ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Programmable, direct support of 2D+3D plotting. Interfaces to many other software packages. Interfacing to external modules written in C, Java, Python or other languages. Language syntax similar to MATLAB. Used for numerical computing in engineering and physics. Smath Studio: SMath LLC (Andrey Ivashov) 2006 1.0.8348 11 September 2022: Free