Search results
Results from the WOW.Com Content Network
The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.
where G is the gravitational constant, M is the mass of the star, R is the radius of the star, and L is the star's luminosity. As an example, the Sun 's thermal time scale is approximately 15.7 million years.
The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [28] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .
In addition, knowing the age of one member of a star system can help determine the age of that system. In a star system, stars almost always form at the same time as each other, and given the age of one star, the age of all of the others can be known. [14] However, this method does not work for galaxies. These units are much larger, and are not ...
There are large variations in surface temperature over space and time on airless or near-airless bodies like Mars, which has daily surface temperature variations of 50–60 K. [18] [19] Because of a relative lack of air to transport or retain heat, significant variations in temperature develop. Assuming the planet radiates as a blackbody (i.e ...
This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2M ⊙ < M < 55M ⊙ and does not apply to red giants or white dwarfs. As a star approaches the Eddington luminosity then a = 1. In summary, the relations for stars with different ranges of mass are, to a good approximation, as the following: [2] [4] [5]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Main-sequence stars vary in surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars – in particular, newly-formed white dwarfs – can have surface temperatures above 100,000 K. [3] Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest.