Search results
Results from the WOW.Com Content Network
Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true if its operand is false and a value of false if its operand is true. The truth table for NOT p (also written as ¬p , Np , Fpq , or ~p ) is as follows:
is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence , depends on the author’s style. x + 5 = y + 2 ⇔ x + 3 = y {\displaystyle x+5=y+2\Leftrightarrow x+3=y}
Classical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false, and a value of false when its operand is true. Thus if statement P {\displaystyle P} is true, then ¬ P {\displaystyle \neg P} (pronounced "not P") would then be false; and conversely, if ¬ P ...
Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false. Conjunction and disjunction are dual with respect to negation, which is expressed by De Morgan's laws: ¬(p ∧ q) ⇔ ¬ p ∨ ¬ q ¬(p ∨ q) ⇔ ¬ p ∧ ¬ q. Propositional variables become variables in the Boolean ...
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [71] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [48]
In logic, a truth function [1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value.
For instance, two statements or more are logically incompatible if, and only if their conjunction is logically false. One statement logically implies another when it is logically incompatible with the negation of the other. A statement is logically true if, and only if its opposite is logically false. The opposite statements must contradict one ...
The simplest case occurs when an OR formula becomes one its own inputs e.g. p = q. Begin with (p ∨ s) = q, then let p = q. Observe that q's "definition" depends on itself "q" as well as on "s" and the OR connective; this definition of q is thus impredicative. Either of two conditions can result: [24] oscillation or memory.