Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
Implication alone is not functionally complete as a logical operator because one cannot form all other two-valued truth functions from it.. For example, the two-place truth function that always returns false is not definable from → and arbitrary propositional variables: any formula constructed from → and propositional variables must receive the value true when all of its variables are ...
is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence , depends on the author’s style. x + 5 = y + 2 ⇔ x + 3 = y {\displaystyle x+5=y+2\Leftrightarrow x+3=y}
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [71] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [48]
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
The simplest case occurs when an OR formula becomes one its own inputs e.g. p = q. Begin with (p ∨ s) = q, then let p = q. Observe that q's "definition" depends on itself "q" as well as on "s" and the OR connective; this definition of q is thus impredicative. Either of two conditions can result: [24] oscillation or memory.
Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false. Conjunction and disjunction are dual with respect to negation, which is expressed by De Morgan's laws: ¬(p ∧ q) ⇔ ¬ p ∨ ¬ q ¬(p ∨ q) ⇔ ¬ p ∧ ¬ q. Propositional variables become variables in the Boolean ...
The white area shows where the statement is false. Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent.