Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Hasse diagram of the set P of divisors of 60, partially ordered by the relation "x divides y".The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.)
Subsets of partially ordered sets inherit the order. We already applied this by considering the subset {2,3,4,5,6} of the natural numbers with the induced divisibility ordering. Now there are also elements of a poset that are special with respect to some subset of the order. This leads to the definition of upper bounds.
For example, the ideal completion of a given partial order P is the set of all ideals of P ordered by subset inclusion. This construction yields the free dcpo generated by P . An ideal is principal if and only if it is compact in the ideal completion, so the original poset can be recovered as the sub-poset consisting of compact elements.
The notation of 0 and 1 is used preferably when the poset is a complemented lattice, and when no confusion is likely, i.e. when one is not talking about partial orders of numbers that already contain elements 0 and 1 different from bottom and top. The existence of least and greatest elements is a special completeness property of a partial order.
The Dedekind–MacNeille completion of a partially ordered set S is the smallest complete lattice with S embedded in it, in the sense that, if L is any lattice completion of S, then the Dedekind–MacNeille completion is a partially ordered subset of L. [6]
Inclusion is the canonical partial order, in the sense that every partially ordered set (,) is isomorphic to some collection of sets ordered by inclusion. The ordinal numbers are a simple example: if each ordinal n is identified with the set [ n ] {\displaystyle [n]} of all ordinals less than or equal to n , then a ≤ b {\displaystyle a\leq b ...