Search results
Results from the WOW.Com Content Network
A chain is a subset of a poset that is a totally ordered set. For example, {{}, ... each of which shows an example for a partial order OEIS sequence A001035 ...
Hasse diagram of the set P of divisors of 60, partially ordered by the relation "x divides y".The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
In mathematics, the Hausdorff maximal principle is an alternate and earlier formulation of Zorn's lemma proved by Felix Hausdorff in 1914 (Moore 1982:168). It states that in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset, where "maximal" is with respect to set inclusion.
For example, the ideal completion of a given partial order P is the set of all ideals of P ordered by subset inclusion. This construction yields the free dcpo generated by P . An ideal is principal if and only if it is compact in the ideal completion, so the original poset can be recovered as the sub-poset consisting of compact elements.
An ordered set in which every pair of elements is comparable is called totally ordered. Every subset S of a partially ordered set P can itself be seen as partially ordered by restricting the order relation inherited from P to S. A subset S of a partially ordered set P is called a chain (in P) if it is totally ordered in the inherited order.
Consequently, partially ordered sets for which certain infima are known to exist become especially interesting. For instance, a lattice is a partially ordered set in which all nonempty finite subsets have both a supremum and an infimum, and a complete lattice is a partially ordered set in which all subsets
The notation of 0 and 1 is used preferably when the poset is a complemented lattice, and when no confusion is likely, i.e. when one is not talking about partial orders of numbers that already contain elements 0 and 1 different from bottom and top. The existence of least and greatest elements is a special completeness property of a partial order.
In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice.