Search results
Results from the WOW.Com Content Network
Tin (50 Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons.
Hydrogen (1 H) has three naturally occurring isotopes: 1 H, 2 H, and 3 H. 1 H and 2 H are stable, while 3 H has a half-life of 12.32(2) years. [3] [nb 1] Heavier isotopes also exist; all are synthetic and have a half-life of less than 1 zeptosecond (10 −21 s). [4] [5] Of these, 5 H is the least stable, while 7 H is the most.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
The other six isotopes forming 82.7% of natural tin have capture cross sections of 0.3 barns or less, making them effectively transparent to neutrons. [27] Tin has 31 unstable isotopes, ranging in mass number from 99 to 139. The unstable tin isotopes have half-lives of less than a year except for tin-126, which has a half-life of
Tin is a chemical element with the symbol Sn (for Latin: stannum) and atomic number 50. It is a main-group metal in group 14 of the periodic table . Tin shows chemical similarity to both neighboring group 14 elements, germanium and lead and has two possible oxidation states , +2 and the slightly more stable +4.
Of the 94 natural elements, eighty have a stable isotope and one more has an almost-stable isotope (with a half-life of 2.01×10 19 years, over a billion times the age of the universe). [15] [b] Two more, thorium and uranium, have isotopes undergoing radioactive decay with a half-life comparable to the age of the Earth.
The number of neutrons in a nucleus usually has very little effect on an element's chemical properties; except for hydrogen (for which the kinetic isotope effect is significant). Thus, all carbon isotopes have nearly identical chemical properties because they all have six electrons, even though they may have 6 to 8 neutrons.