Search results
Results from the WOW.Com Content Network
The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.
In color science, a color gradient (also known as a color ramp or a color progression) specifies a range of position-dependent colors, usually used to fill a region. In assigning colors to a set of values, a gradient is a continuous colormap, a type of color scheme .
The pixels with the largest gradient values in the direction of the gradient become edge pixels, and edges may be traced in the direction perpendicular to the gradient direction. One example of an edge detection algorithm that uses gradients is the Canny edge detector. Image gradients can also be used for robust feature and texture matching.
The curl of the gradient of any continuously twice-differentiable scalar field (i.e., differentiability class) is always the zero vector: =. It can be easily proved by expressing ∇ × ( ∇ φ ) {\displaystyle \nabla \times (\nabla \varphi )} in a Cartesian coordinate system with Schwarz's theorem (also called Clairaut's theorem on equality ...
Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Gradient in vector calculus is a vector field representing the maximum rate of increase of a scalar field or a multivariate function and the direction of this maximal rate. Gradient may also refer to: Gradient sro, a Czech aircraft manufacturer; Image gradient, a gradual change or blending of color