Search results
Results from the WOW.Com Content Network
If a molecule or salt dissociates in solution, the concentration refers to the original chemical formula in solution, the molar concentration is sometimes called formal concentration or formality (F A) or analytical concentration (c A). For example, if a sodium carbonate solution (Na 2 CO 3) has a formal concentration of c(Na 2 CO 3) = 1 mol/L ...
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration , molar concentration , number concentration , and volume concentration . [ 1 ]
Normality can be used for acid-base titrations. For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be ...
C A is the analytical concentration of the acid, C H is the analytical concentration of added hydrogen ions, β q are the cumulative association constants. K w is the constant for self-ionization of water. There are two non-linear simultaneous equations in two unknown quantities [A 3−] and [H +]. Many computer programs are available to do ...
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]
In analytical chemistry, a standard solution (titrant or titrator) is a solution containing an accurately known concentration.Standard solutions are generally prepared by dissolving a solute of known mass into a solvent to a precise volume, or by diluting a solution of known concentration with more solvent. [1]
In analytical chemistry, quantitative analysis is the determination of the absolute or relative abundance (often expressed as a concentration) of one, several or all particular substance(s) present in a sample. [1] It relates to the determination of percentage of constituents in any given sample. [2]
For example, the mass of water might be written in subscripts as m H 2 O, m water, m aq, m w (if clear from context) etc., or simply as m(H 2 O). Another example could be the electronegativity of the fluorine-fluorine covalent bond, which might be written with subscripts χ F-F, χ FF or χ F-F etc., or brackets χ(F-F), χ(FF) etc. Neither is ...