Search results
Results from the WOW.Com Content Network
The following pseudocode demonstrates an algorithm that merges input lists (either linked lists or arrays) A and B into a new list C. [1] [2]: 104 The function head yields the first element of a list; "dropping" an element means removing it from its list, typically by incrementing a pointer or index.
A circular list can be split into two circular lists, in constant time, by giving the addresses of the last node of each piece. The operation consists in swapping the contents of the link fields of those two nodes. Applying the same operation to any two nodes in two distinct lists joins the two list into one.
List of applications and frameworks that use skip lists: Apache Portable Runtime implements skip lists. [9] MemSQL uses lock-free skip lists as its prime indexing structure for its database technology. MuQSS, for the Linux kernel, is a cpu scheduler built on skip lists. [10] [11] Cyrus IMAP server offers a "skiplist" backend DB implementation [12]
Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, insertion sort provides several advantages:
A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays. In some contexts, such as in Lisp programming, the term list may refer specifically to a linked list rather than an array.
Because the lists are sorted initially, the head is the smallest element of each list; the heap property guarantees that the root contains the minimum element over all lists. Extract the root node from the heap, add the head element to the output buffer, create a new node out of the tail, and insert it into the heap.
In computer science, Merge Sort (also commonly spelled as mergesort and as merge-sort [2]) is an efficient, general-purpose, and comparison-based sorting algorithm.Most implementations produce a stable sort, which means that the relative order of equal elements is the same in the input and output.
A non-blocking linked list is an example of non-blocking data structures designed to implement a linked list in shared memory using synchronization primitives: Compare-and-swap; Fetch-and-add; Load-link/store-conditional; Several strategies for implementing non-blocking lists have been suggested.