enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...

  3. Perturbation function - Wikipedia

    en.wikipedia.org/wiki/Perturbation_function

    The duality gap is the difference of the right and left hand side of the inequality (,) (,),where is the convex conjugate in both variables. [3] [4]For any choice of perturbation function F weak duality holds.

  4. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets).

  5. Strong duality - Wikipedia

    en.wikipedia.org/wiki/Strong_duality

    Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual ... Slater's condition for a convex optimization problem ...

  6. Duality gap - Wikipedia

    en.wikipedia.org/wiki/Duality_gap

    This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...

  7. Slater's condition - Wikipedia

    en.wikipedia.org/wiki/Slater's_condition

    In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. [1] Informally, Slater's condition states that the feasible region must have an interior point (see technical details below).

  8. Convex conjugate - Wikipedia

    en.wikipedia.org/wiki/Convex_conjugate

    In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).

  9. Fenchel's duality theorem - Wikipedia

    en.wikipedia.org/wiki/Fenchel's_duality_theorem

    In mathematics, Fenchel's duality theorem is a result in the theory of convex functions named after Werner Fenchel. Let ƒ be a proper convex function on R n and let g be a proper concave function on R n. Then, if regularity conditions are satisfied,