enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    A sufficient condition for recovering () (and therefore ()) from just these samples (i.e. from the Fourier series) is that the non-zero portion of () be confined to a known interval of duration , which is the frequency domain dual of the Nyquist–Shannon sampling theorem.

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...

  4. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  6. Pontryagin duality - Wikipedia

    en.wikipedia.org/wiki/Pontryagin_duality

    The 2-adic integers, with selected corresponding characters on their Pontryagin dual group. In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and ...

  7. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    The appropriate choice of scaling to achieve unitarity is /, so that the energy in the physical domain will be the same as the energy in the Fourier domain, i.e., to satisfy Parseval's theorem. (Other, non-unitary, scalings, are also commonly used for computational convenience; e.g., the convolution theorem takes on a slightly simpler form with ...

  8. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier transform (bottom) is a periodic summation of the original transform.

  9. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain. A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system).