Search results
Results from the WOW.Com Content Network
In hydrogen fluoride (HF), the hydrogen 1s orbital can mix with fluorine 2p z orbital to form a sigma bond because experimentally the energy of 1s of hydrogen is comparable with 2p of fluorine. The HF electron configuration 1σ 2 2σ 2 3σ 2 1π 4 reflects that the other electrons remain in three lone pairs and that the bond order is 1.
The Slater-type orbital (STO) is a form without radial nodes but decays from the nucleus as does a hydrogen-like orbital. The form of the Gaussian type orbital (Gaussians) has no radial nodes and decays as e − α r 2 {\displaystyle e^{-\alpha r^{2}}} .
The orbital wave functions are positive in the red regions and negative in the blue. The right column shows virtual MO's which are empty in the ground state, but may be occupied in excited states. In chemistry, a molecular orbital (/ ɒr b ə d l /) is a mathematical function describing the location and wave-like behavior of an electron in a ...
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a nucleus of a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force.
Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] but more commonly called hydrogen gas, molecular hydrogen or simply hydrogen.
The Bohr model is a relatively primitive model of the hydrogen atom, compared to the valence shell model. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics and thus may be considered to be an obsolete scientific theory.
The atomic orbitals used are typically those of hydrogen-like atoms since these are known analytically i.e. Slater-type orbitals but other choices are possible such as the Gaussian functions from standard basis sets or the pseudo-atomic orbitals from plane-wave pseudopotentials. Example of a molecular orbital diagram.
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.