Search results
Results from the WOW.Com Content Network
An ammonia derivative of the form H 2 NNR 2 such as hydrazine (H 2 NNH 2) or 2,4-dinitrophenylhydrazine can also be the nucleophile and after the elimination of water, resulting in the formation of a hydrazone, which are usually orange crystalline solids. This reaction forms the basis of a test for aldehydes and ketones. [18]
Reducing form of glucose (the aldehyde group is on the far right) A reducing sugar is any sugar that is capable of acting as a reducing agent. [1] In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a ...
Ketones are trigonal planar around the ketonic carbon, with C–C–O and C–C–C bond angles of approximately 120°. Ketones differ from aldehydes in that the carbonyl group (C=O) is bonded to two carbons within a carbon skeleton. In aldehydes, the carbonyl is bonded to one carbon and one hydrogen and are located at the ends of carbon chains.
Hydrazine, organohydrazines, and 1,1-diorganohydrazines react with aldehydes and ketones to give hydrazones. Phenylhydrazine reacts with reducing sugars to form hydrazones known as osazones, which was developed by German chemist Emil Fischer as a test to differentiate monosaccharides. [4] [5]
Aldehydes and to some extent even ketones, hydrate to geminal diols. The reaction is especially dominant for formaldehyde, which, in the presence of water, exists significantly as dihydroxymethane. Conceptually similar reactions include hydroamination and hydroalkoxylation, which involve adding amines and alcohols to alkenes.
An aldose is a monosaccharide (a simple sugar) with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from ketoses, which have the carbonyl group away from the end of the molecule, and are therefore ketones.
Chemically, monosaccharides are polyhydroxy aldehydes with the formula H-[CHOH] n-CHO or polyhydroxy ketones with the formula H-[CHOH] m-CO-[CHOH] n-H with three or more carbon atoms. [1] They are usually colorless, water-soluble, and crystalline organic solids. Contrary to their name (sugars), only some monosaccharides have a sweet taste.
Aldol reactions may proceed by two distinct mechanisms. Carbonyl compounds, such as aldehydes and ketones, can be converted to enols or enol ethers. These species, being nucleophilic at the α-carbon, can attack especially reactive protonated carbonyls such as protonated aldehydes. This is the 'enol mechanism'.