Search results
Results from the WOW.Com Content Network
The Davson-Danielli model threw new light on the understanding of cell membranes, by stressing the important role played by proteins in biological membranes. By the 1950s, cell biologists verified the existence of plasma membranes through the use of electron microscopy (which accounted for higher resolutions).
Many models of communication include the idea that a sender encodes a message and uses a channel to transmit it to a receiver. Noise may distort the message along the way. The receiver then decodes the message and gives some form of feedback. [1] Models of communication simplify or represent the process of communication.
Electrical input–output membrane voltage models – These models produce a prediction for membrane output voltage as a function of electrical stimulation given as current or voltage input. The various models in this category differ in the exact functional relationship between the input current and the output voltage and in the level of detail.
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
A model of communication is a simplified presentation that aims to give a basic explanation of the process by highlighting its most fundamental characteristics and components. [16] [8] [17] For example, James Watson and Anne Hill see Lasswell's model as a mere questioning device and not as a full model of communication. [10]
The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells .
The results of this experiment were key in the development of the "fluid mosaic" model of the cell membrane by Singer and Nicolson in 1972. [19] According to this model, biological membranes are composed largely of bare lipid bilayer with proteins penetrating either half way or all the way through the membrane.
The actin-based membrane skeleton (MSK) meshwork is directly situated on the cytoplasmic surface of the plasma membrane. Membrane skeleton fence, or membrane skeleton corralling model, suggests that this meshwork is likely to partition the plasma membrane into many small compartments with regard to the lateral diffusion of membrane molecules.