Search results
Results from the WOW.Com Content Network
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
Note that this "high temperature" approximation does not distinguish between fermions and bosons. The discrepancy in the partition functions of distinguishable and indistinguishable particles was known as far back as the 19th century, before the advent of quantum mechanics. It leads to a difficulty known as the Gibbs paradox.
For bosons, the exchange symmetry makes them bunch together, and the exchange interaction takes the form of an effective attraction that causes identical particles to be found closer together, as in Bose–Einstein condensation. Exchange interaction effects were discovered independently by physicists Werner Heisenberg and Paul Dirac in 1926. [4 ...
Additionally, we know experimentally that the W and Z bosons are massive, but a boson mass term contains the combination e.g. A μ A μ, which clearly depends on the choice of gauge. Therefore, none of the standard model fermions or bosons can "begin" with mass, but must acquire it by some other mechanism.
The interacting boson model (IBM) is a model in nuclear physics in which nucleons (protons or neutrons) pair up, essentially acting as a single particle with boson properties, with integral spin of either 2 (d-boson) or 0 (s-boson).
At low temperatures, bosons behave differently from fermions (which obey the Fermi–Dirac statistics) in a way that an unlimited number of them can "condense" into the same energy state. This apparently unusual property also gives rise to the special state of matter – the Bose–Einstein condensate .
bosons necessary to explain beta decay, but also a new Z boson that had never been observed. The fact that the W and Z bosons have mass while photons are massless was a major obstacle in developing electroweak theory. These particles are accurately described by an SU(2) gauge theory, but the bosons
In theoretical condensed matter physics and quantum field theory, bosonization is a mathematical procedure by which a system of interacting fermions in (1+1) dimensions can be transformed to a system of massless, non-interacting bosons.