enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  3. M-matrix - Wikipedia

    en.wikipedia.org/wiki/M-matrix

    An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix whose eigenvalues have strictly negative real part. A stable system of differential equations may be represented by a Hurwitz matrix. M-matrix: A Z-matrix with eigenvalues whose real parts are nonnegative. Positive-definite matrix: A Hermitian matrix with every eigenvalue positive. Stability matrix: Synonym for Hurwitz matrix ...

  5. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an m×n matrix and B is an n×p matrix, then their matrix product AB is the m×p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column ...

  7. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...

  8. Nonnegative matrix - Wikipedia

    en.wikipedia.org/wiki/Nonnegative_matrix

    A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is the interior of the set of all non-negative matrices. While such matrices are commonly found, the term "positive matrix" is only occasionally used due to the possible confusion with positive-definite matrices, which are different.

  9. Totally positive matrix - Wikipedia

    en.wikipedia.org/wiki/Totally_positive_matrix

    A totally positive matrix has all entries positive, so it is also a positive matrix; and it has all principal minors positive (and positive eigenvalues). A symmetric totally positive matrix is therefore also positive-definite. A totally non-negative matrix is defined similarly, except that all the minors must be non-negative (positive or zero ...