Search results
Results from the WOW.Com Content Network
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.
Tritium is a low-energy beta emitter commonly used as a radiotracer in research and in traser [check spelling] self-powered lightings. The half-life of tritium is 12.3 years. The electrons from beta emission from tritium are so low in energy (average decay energy 5.7 keV) that a Geiger counter cannot be used to detect them. An advantage of the ...
Betatrons were historically employed in particle physics experiments to provide high-energy beams of electrons—up to about 300 MeV. If the electron beam is directed at a metal plate, the betatron can be used as a source of energetic x-rays, which may be used in industrial and medical applications (historically in radiation oncology).
In all of these therapeutic uses, 131 I destroys tissue by short-range beta radiation. About 90% of its radiation damage to tissue is via beta radiation, and the rest occurs via its gamma radiation (at a longer distance from the radioisotope). It can be seen in diagnostic scans after its use as therapy, because 131 I is also a gamma-emitter.
Early on it was found that X-rays, gamma rays, and beta radiation were essentially equivalent for all cell types. Therefore, the standard radiation type X is generally an X-ray beam with 250 keV photons or cobalt-60 gamma rays. As a result, the relative biological effectiveness of beta and photon radiation is essentially 1.
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
A major medical use of fluorine-18 is: in positron emission tomography (PET) to image the brain and heart; to image the thyroid gland; as a radiotracer to image bones and seeking cancers that have metastasized from other locations in the body and in radiation therapy treating internal tumors.
"Beta burns"—caused by beta particles—are shallow surface burns, usually of skin and less often of lungs or gastrointestinal tract, caused by beta particles, typically from hot particles or dissolved radionuclides that came to direct contact with or close proximity to the body. They can appear similar to sunburn.