Search results
Results from the WOW.Com Content Network
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...
The standard algorithm for solving a system of linear equations is based on Gaussian elimination with some modifications. Firstly, it is essential to avoid division by small numbers, which may lead to inaccurate results.
The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time
Using the concept of left preconditioning for linear systems, we obtain () =, where is the preconditioner, which we can try to solve using the Richardson iteration x n + 1 = x n − γ n T ( A − λ ⋆ I ) x n , n ≥ 0. {\displaystyle \mathbf {x} _{n+1}=\mathbf {x} _{n}-\gamma _{n}T(A-\lambda _{\star }I)\mathbf {x} _{n},\ n\geq 0.}
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as
Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.