Search results
Results from the WOW.Com Content Network
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow , an English mathematician .
A tube and pipe may be specified by standard pipe size designations, e.g., nominal pipe size, or by nominal outside or inside diameter and/or wall thickness. The actual dimensions of pipe are usually not the nominal dimensions: A 1-inch pipe will not actually measure 1 inch in either outside or inside diameter, whereas many types of tubing are ...
Standard dimension ratio (SDR) is a method of rating a pipe's durability against pressure. The standard dimension ratio describes the correlation between the pipe dimension and the thickness of the pipe wall. [1] Common nominations are SDR11, SDR17, SDR26 and SDR35. Pipes with a lower SDR can withstand higher pressures.
Nominal Pipe Size (NPS) is a North American set of standard sizes for pipes used for high or low pressures and temperatures. [1] " Nominal" refers to pipe in non-specific terms and identifies the diameter of the hole with a non-dimensional number (for example – 2-inch nominal steel pipe" consists of many varieties of steel pipe with the only criterion being a 2.375-inch (60.3 mm) outside ...
The SMYS is required to determine the maximum allowable operating pressure (MAOP) of a pipeline, as determined by Barlow's Formula which is P = (2 * S * T)/(OD * SF), where P is pressure, OD is the pipe’s outside diameter, S is the SMYS, T is its wall thickness, and SF is a [Safety Factor].
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
Pipe sizes are documented by a number of standards, including API 5L, ANSI/ASME B36.10M (Table 1) in the US, and BS 1600 and BS 1387 in the United Kingdom. Typically the pipe wall thickness is the controlled variable, and the Inside Diameter (I.D.) is allowed to vary. The pipe wall thickness has a variance of approximately 12.5 percent.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.