Search results
Results from the WOW.Com Content Network
For a thin lens in air, the focal length is the distance from the center of the lens to the principal foci (or focal points) of the lens.For a converging lens (for example a convex lens), the focal length is positive and is the distance at which a beam of collimated light will be focused to a single spot.
For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...
A lens with one convex and one concave side is convex-concave or meniscus. Convex-concave lenses are most commonly used in corrective lenses, since the shape minimizes some aberrations. For a biconvex or plano-convex lens in a lower-index medium, a collimated beam of light passing through the lens converges to a spot (a focus) behind
R = radius of curvature, R > 0 for concave, valid in the paraxial approximation θ is the mirror angle of incidence in the horizontal plane. Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.
Thin lenses produce focal points on either side that can be modeled using the lensmaker's equation. [5] In general, two types of lenses exist: convex lenses, which cause parallel light rays to converge, and concave lenses, which cause parallel light rays to diverge. The detailed prediction of how images are produced by these lenses can be made ...
For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...
This term is generally used in physics regarding the study of lenses and mirrors (see radius of curvature (optics)). It can also be defined as the spherical distance between the point at which all the rays falling on a lens or mirror either seems to converge to (in the case of convex lenses and concave mirrors) or diverge from (in the case of ...
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. In optometry, the least distance of distinct vision (LDDV) or the reference seeing distance (RSD) is the closest someone with "normal" vision (20/20 vision) can comfortably look at something. [1]