Search results
Results from the WOW.Com Content Network
The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...
An alternative approach is the compact representation, which involves a low-rank representation for the direct and/or inverse Hessian. [6] This represents the Hessian as a sum of a diagonal matrix and a low-rank update. Such a representation enables the use of L-BFGS in constrained settings, for example, as part of the SQP method.
As described above, some method such as quantum mechanics can be used to calculate the energy, E(r) , the gradient of the PES, that is, the derivative of the energy with respect to the position of the atoms, ∂E/∂r and the second derivative matrix of the system, ∂∂E/∂r i ∂r j, also known as the Hessian matrix, which describes the curvature of the PES at r.
In other words, the matrix of the second-order partial derivatives, known as the Hessian matrix, is a symmetric matrix. Sufficient conditions for the symmetry to hold are given by Schwarz's theorem , also called Clairaut's theorem or Young's theorem .
Therefore, in order to avoid any matrix inversion, the inverse of the Hessian can be approximated instead of the Hessian itself: =. [9] From an initial guess x 0 {\displaystyle \mathbf {x} _{0}} and an approximate inverted Hessian matrix H 0 {\displaystyle H_{0}} the following steps are repeated as x k {\displaystyle \mathbf {x} _{k}} converges ...
The following test can be applied at any critical point a for which the Hessian matrix is invertible: If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.
In mathematics, k-Hessian equations (or Hessian equations for short) are partial differential equations (PDEs) based on the Hessian matrix. More specifically, a Hessian equation is the k-trace, or the kth elementary symmetric polynomial of eigenvalues of the Hessian matrix. When k ≥ 2, the k-Hessian equation is a fully nonlinear partial ...
The graph colouring techniques explore sparsity patterns of the Hessian matrix and cheap Hessian vector products to obtain the entire matrix. Thus these techniques are suited for large, sparse matrices. The general strategy of any such colouring technique is as follows. Obtain the global sparsity pattern of