enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  3. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.

  4. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes.

  5. Gambler's fallacy - Wikipedia

    en.wikipedia.org/wiki/Gambler's_fallacy

    The probability of getting two heads in two tosses is ⁠ 1 / 4 ⁠ (one in four) and the probability of getting three heads in three tosses is ⁠ 1 / 8 ⁠ (one in eight). In general, if A i is the event where toss i of a fair coin comes up heads, then:

  6. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy of the unknown result of the next toss of the coin is maximized if the coin is fair (that is, if heads and tails both have equal probability 1/2). This is the situation of maximum uncertainty as it is most difficult to predict the outcome of the next toss; the result of each toss of the coin delivers one full bit of information.

  7. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    Feller's coin-tossing constants are a set of numerical constants which describe asymptotic probabilities that in n independent tosses of a fair coin, no run of k consecutive heads (or, equally, tails) appears. William Feller showed [1] that if this probability is written as p(n,k) then

  8. Coupling (probability) - Wikipedia

    en.wikipedia.org/wiki/Coupling_(probability)

    Assume two biased coins, the first with probability p of turning up heads and the second with probability q > p of turning up heads. Intuitively, if both coins are tossed the same number of times, we should expect the first coin turns up fewer heads than the second one.

  9. Probability interpretations - Wikipedia

    en.wikipedia.org/wiki/Probability_interpretations

    There are two broad categories [1] [2] of probability interpretations which can be called "physical" and "evidential" probabilities. Physical probabilities, which are also called objective or frequency probabilities , are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms.