Search results
Results from the WOW.Com Content Network
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.
The following is a list of all 52 currently known (as of January 2025) Mersenne primes and corresponding perfect numbers, along with their exponents p. The largest 18 of these have been discovered by the distributed computing project Great Internet Mersenne Prime Search , or GIMPS; their discoverers are listed as "GIMPS / name ", where the name ...
with one or more prime factors. is evenly divisible by each of these factors, but has a remainder of one when divided by any of the prime numbers in the given list, so none of the prime factors of can be in the given list. Because there is no finite list of all the primes, there must be infinitely many primes.
Since q is a factor of 2 p − 1, for all positive integers c, q is also a factor of 2 pc − 1. Since p is prime and q is not a factor of 2 1 − 1, p is also the smallest positive integer x such that q is a factor of 2 x − 1. As a result, for all positive integers x, q is a factor of 2 x − 1 if and only if p is a factor of x.
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.
The only base-4 repunit prime is 5 (). = (+) (), and 3 always divides + when n is odd and when n is even. For n greater than 2, both + and are greater than 3, so removing the factor of 3 still leaves two factors greater than 1.
This category includes articles relating to prime numbers and primality. For a list of prime numbers, see list of prime numbers . This category roughly corresponds to MSC 11A41 Primes and MSC 11A51 Factorization; primality