enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    In multilevel modeling, an overall change function (e.g. linear, quadratic, cubic etc.) is fitted to the whole sample and, just as in multilevel modeling for clustered data, the slope and intercept may be allowed to vary. For example, in a study looking at income growth with age, individuals might be assumed to show linear improvement over time.

  3. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  5. Mixed model - Wikipedia

    en.wikipedia.org/wiki/Mixed_model

    Currently, this is the method implemented in statistical software such as Python (statsmodels package) and SAS (proc mixed), and as initial step only in R's nlme package lme(). The solution to the mixed model equations is a maximum likelihood estimate when the distribution of the errors is normal. [19] [20]

  6. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    Multinomial logistic regression is a particular solution to classification problems that use a linear combination of the observed features and some problem-specific parameters to estimate the probability of each particular value of the dependent variable.

  7. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  8. Conditional logistic regression - Wikipedia

    en.wikipedia.org/wiki/Conditional_logistic...

    For example, consider estimating the impact of exercise on the risk of cardiovascular disease. If people who exercise more are younger, have better access to healthcare, or have other differences that improve their health, then a logistic regression of cardiovascular disease incidence on minutes spent exercising may overestimate the impact of ...

  9. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    In SAS, SUR can be estimated using the syslin procedure. [14] In Stata, SUR can be estimated using the sureg and suest commands. [15] [16] [17] In Limdep, SUR can be estimated using the sure command [18] In Python, SUR can be estimated using the command SUR in the “linearmodels” package. [19] In gretl, SUR can be estimated using the system ...