enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The heat capacity depends on how the external variables of the system are changed when the heat is supplied. If the only external variable of the system is the volume, then we can write: d S = ( ∂ S ∂ T ) V d T + ( ∂ S ∂ V ) T d V {\displaystyle dS=\left({\frac {\partial S}{\partial T}}\right)_{V}dT+\left({\frac {\partial S}{\partial V ...

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)

  5. Bridgman's thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Bridgman's_thermodynamic...

    Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is: = which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant.

  6. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    C p is therefore the slope of a plot of temperature vs. isobaric heat content (or the derivative of a temperature/heat content equation). The SI units for heat capacity are J/(mol·K). Molar heat content of four substances in their designated states above 298.15 K and at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of ...

  7. Thermal diffusivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_diffusivity

    Together, ρc p can be considered the volumetric heat capacity (J/(m 3 ·K)). As seen in the heat equation , [ 5 ] ∂ T ∂ t = α ∇ 2 T , {\displaystyle {\frac {\partial T}{\partial t}}=\alpha \nabla ^{2}T,} one way to view thermal diffusivity is as the ratio of the time derivative of temperature to its curvature , quantifying the rate at ...

  8. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    This extra heat amounts to about 40% more than the previous amount added. In this example, the amount of heat added with a locked piston is proportional to C V, whereas the total amount of heat added is proportional to C P. Therefore, the heat capacity ratio in this example is 1.4.

  9. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property.