enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The derivative of ln(x) is 1/x; this implies that ln(x) is the unique antiderivative of 1/x that has the value 0 for x = 1. It is this very simple formula that motivated to qualify as "natural" the natural logarithm; this is also one of the main reasons of the importance of the constant e .

  5. List of integrals of logarithmic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions

  6. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = ⁡ (⁡) = ⁡ for every b > 0.

  8. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    For x > 1 let π 0 (x) = π(x) − ⁠ 1 / 2 ⁠ when x is a prime number, and π 0 (x) = π(x) otherwise. Bernhard Riemann, in his work On the Number of Primes Less Than a Given Magnitude, proved that π 0 (x) is equal to [9] Riemann's explicit formula using the first 200 non-trivial zeros of the zeta function

  9. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    To mitigate this ambiguity, the ISO 80000 specification recommends that log 10 (x) should be written lg(x), and log e (x) should be ln(x). Page from a table of common logarithms. This page shows the logarithms for numbers from 1000 to 1509 to five decimal places. The complete table covers values up to 9999.