enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum gravity - Wikipedia

    en.wikipedia.org/wiki/Quantum_gravity

    Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics.It deals with environments in which neither gravitational nor quantum effects can be ignored, [1] such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.

  3. Physics applications of asymptotically safe gravity - Wikipedia

    en.wikipedia.org/wiki/Physics_applications_of...

    Asymptotic safety, if realized in Nature, has far reaching consequences in all areas where quantum effects of gravity are to be expected. Their exploration, however, is still in its infancy. By now there are some phenomenological studies concerning the implications of asymptotic safety in particle physics , astrophysics and cosmology , for ...

  4. Graviton - Wikipedia

    en.wikipedia.org/wiki/Graviton

    A theory of quantum gravity is needed in order to reconcile these differences. [16] Whether this theory should be background-independent is an open question. The answer to this question will determine the understanding of what specific role gravitation plays in the fate of the universe.

  5. Superstring theory - Wikipedia

    en.wikipedia.org/wiki/Superstring_theory

    This considerably complicates efforts to test string theory because there is an astronomically high number—10 500 or more—of configurations that meet some of the basic requirements to be consistent with our world. Along with the extreme remoteness of the Planck scale, this is the other major reason it is hard to test superstring theory.

  6. Hierarchy problem - Wikipedia

    en.wikipedia.org/wiki/Hierarchy_problem

    More technically, the question is why the Higgs boson is so much lighter than the Planck mass (or the grand unification energy, or a heavy neutrino mass scale): one would expect that the large quantum contributions to the square of the Higgs boson mass would inevitably make the mass huge, comparable to the scale at which new physics appears ...

  7. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces.

  8. Cosmological constant problem - Wikipedia

    en.wikipedia.org/wiki/Cosmological_constant_problem

    [8] [9] In quantum mechanics, the vacuum itself should experience quantum fluctuations. In general relativity, those quantum fluctuations constitute energy that would add to the cosmological constant. However, this calculated vacuum energy density is many orders of magnitude bigger than the observed cosmological constant. [10]

  9. M-theory - Wikipedia

    en.wikipedia.org/wiki/M-theory

    [a] A quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, [b] but difficulties arise when one attempts to apply the usual prescriptions of quantum theory to the force of gravity. [c] String theory is a theoretical framework that