Ad
related to: general and special linear groups math playground 2 grade 3 melc based- About Us
AdaptedMind Creates A Custom
Learning Experience For Your Child
- Math Practice PreK-8
Learn at your own pace.
Discover math and have fun!
- How It Works
Teachers Create Math Content, Game
Designers Make It Fun & Interactive
- Math Games and Worksheets
Explore our monster math world
Play 20 free problems daily!
- About Us
Search results
Results from the WOW.Com Content Network
In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant
In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.
The group SL(2, R) acts on its Lie algebra sl(2, R) by conjugation (remember that the Lie algebra elements are also 2 × 2 matrices), yielding a faithful 3-dimensional linear representation of PSL(2, R). This can alternatively be described as the action of PSL(2, R) on the space of quadratic forms on R 2. The result is the following representation:
The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.
This family of groups includes the special linear groups SL(n, R) for n ≥ 3 and the special orthogonal groups SO(p,q) for p > q ≥ 2 and SO(p,p) for p ≥ 3. More generally, this holds for simple algebraic groups of rank at least two over a local field. The pairs (R n ⋊ SL(n, R), R n) and (Z n ⋊ SL(n, Z), Z n) have relative property (T ...
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special [1] automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. [2]
Special groups include the general linear group, the special linear group, and the symplectic group. Special groups are necessarily connected. Products of special groups are special. The projective linear group is not special because there exist Azumaya algebras, which are trivial over a finite separable extension, but not over the base field.
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane .
Ad
related to: general and special linear groups math playground 2 grade 3 melc based