Search results
Results from the WOW.Com Content Network
Conformal symmetries of a sphere are generated by the inversion in all of its hyperspheres. On the other hand, Riemannian isometries of a sphere are generated by inversions in geodesic hyperspheres (see the Cartan–Dieudonné theorem.) The Euclidean sphere can be mapped to the conformal sphere in a canonical manner, but not vice versa.
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit n {\displaystyle n} -sphere is an n {\displaystyle n} -sphere of unit radius in ( n + 1 ) {\displaystyle (n+1)} - dimensional Euclidean space ; the unit circle is a ...
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).
In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, [1] is a rigidity theorem about conformal mappings in Euclidean space.It states that every smooth conformal mapping on a domain of R n, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions).
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]
Clark, Thomas D. Indiana University: Midwestern Pioneer, Vol II In Mid-Passage (1973) Clark, Thomas D. Indiana University: Midwestern Pioneer: Volume III/ Years of Fulfillment (1977) covers 1938–68 with emphasis on Wells. Gray, Donald J., ed. The Department of English at Indiana University, Bloomington, 1868–1970 (1974)
If (M, g) is the unit sphere S n with its usual round metric and (N, h) is the sphere of radius 2 with its usual round metric, both thought of as subsets of the ambient coordinate space R n+1, then the "expansion" map φ : R n+1 → R n+1 given by φ(x) = 2x induces a geodesic map of M onto N.
The stereographic projection maps the -sphere onto -space with a single adjoined point at infinity; under the metric thereby defined, {} is a model for the -sphere. In the more general setting of topology , any topological space that is homeomorphic to the unit n {\displaystyle n} -sphere is called an n ...