enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The atomic number determines the chemical properties of the atom, and the neutron number determines the isotope or nuclide. [7]: 4 The terms isotope and nuclide are often used synonymously, but they refer to chemical and nuclear properties, respectively. [7]: 4 Isotopes are nuclides with the same atomic number, but different neutron number.

  3. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    [a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is electrically neutral. The masses of the proton and neutron are similar: for the proton it is 1.6726 × 10 −27 kg ( 938.27 MeV/ c 2 ), while for the neutron it is 1.6749 × 10 −27 kg ( 939.57 ...

  4. Discovery of the neutron - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_the_neutron

    A schematic of the nucleus of an atom indicating β − radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, a red sphere was a proton with positive charge, and a blue sphere was a proton tightly bound to an electron, with no net charge.

  5. Nuclear structure - Wikipedia

    en.wikipedia.org/wiki/Nuclear_structure

    Nucleons are thought to be composed of two kind of particles, the neutron and the proton that differ through their intrinsic property, associated with their iso-spin quantum number. This concept enables the explanation of the bound state of Deuterium, in which the proton and neutron can couple their spin and iso-spin in two different manners ...

  6. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    It is that sharing of electrons to create stable electronic orbits about the nuclei that appears to us as the chemistry of our macro world. Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons.

  7. Neutral particle - Wikipedia

    en.wikipedia.org/wiki/Neutral_particle

    Other neutral particles are very short-lived and decay before they could be detected even if they were charged. They have been observed only indirectly. They include: Z bosons [PDG 4] Dozens of heavy neutral hadrons: Neutral mesons such as the π 0 [PDG 5] and K 0 [PDG 6] The neutral Delta baryon (Δ 0), [PDG 7] and other neutral baryons, such ...

  8. Truly neutral particle - Wikipedia

    en.wikipedia.org/wiki/Truly_neutral_particle

    ), is truly neutral. Such a state is called an "onium", another example of which is positronium, the bound state of an electron and a positron (e − e +). [1] By way of contrast, neutrinos are not truly neutral since they have a weak isospin of ⁠± + 1 / 2 ⁠, or equivalently, a non-zero weak hypercharge, both of

  9. Atomic physics - Wikipedia

    en.wikipedia.org/wiki/Atomic_physics

    The atom is said to have undergone the process of ionization. If the electron absorbs a quantity of energy less than the binding energy, it will be transferred to an excited state. After a certain time, the electron in an excited state will "jump" (undergo a transition) to a lower state.