Search results
Results from the WOW.Com Content Network
The telegraph required an explanatory system, and the 1873 publication by James Clerk Maxwell of A Treatise on Electricity and Magnetism instituted a field theory of forces and required differential geometry for expression. Linear algebra is flat differential geometry and serves in tangent spaces to manifolds.
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting" [1] [2]) the metric notions of distance and angle.. As the notion of parallel lines is one of the main properties that is independent of any metric, affine geometry is often considered as the study of parallel lines.
A linear system of divisors algebraicizes the classic geometric notion of a family of curves, as in the Apollonian circles.. In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.
η is a linear isomorphism of each tangent space of P with aff(n). The last condition means that η is an absolute parallelism on P, i.e., it identifies the tangent bundle of P with a trivial bundle (in this case P × aff(n)). The pair (P, η) defines the structure of an affine geometry on M, making it into an affine manifold.
[1]: p. 23 From this, every straight line has a linear equation homogeneous in x, y, z. Every equation of the form l x + m y + n z = 0 {\displaystyle lx+my+nz=0} in real coefficients is a real straight line of finite points unless l : m : n is proportional to a : b : c , the side lengths, in which case we have the locus of points at infinity.
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point. This means that one can convert a point given in a Cartesian ...
A linear space is a basic structure in incidence geometry. A linear space consists of a set of elements called points, and a set of elements called lines. Each line is a distinct subset of the points. The points in a line are said to be incident with the line. Each two points are in a line, and any two lines may have no more than one point in ...
In linear algebra, particularly projective geometry, a semilinear map between vector spaces V and W over a field K is a function that is a linear map "up to a twist", hence semi-linear, where "twist" means "field automorphism of K". Explicitly, it is a function T : V → W that is: