Search results
Results from the WOW.Com Content Network
Lot quality assurance sampling (LQAS) is a random sampling methodology, originally developed in the 1920s [1] as a method of quality control in industrial production. Compared to similar sampling techniques like stratified and cluster sampling, LQAS provides less information but often requires substantially smaller sample sizes.
A cheaper method would be to use a stratified sample with urban and rural strata. The rural sample could be under-represented in the sample, but weighted up appropriately in the analysis to compensate. More generally, data should usually be weighted if the sample design does not give each individual an equal chance of being selected.
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
The van der Pauw Method is a technique commonly used to measure the resistivity and the Hall coefficient of a sample. Its strength lies in its ability to accurately measure the properties of a sample of any arbitrary shape, as long as the sample is approximately two-dimensional (i.e. it is much thinner than it is wide), solid (no holes), and the electrodes are placed on its perimeter.
The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size n {\displaystyle n} , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size ( n − 1 ) {\displaystyle (n-1)} obtained by omitting one observation.
The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...
Finite difference methods for heat equation and related PDEs: FTCS scheme (forward-time central-space) — first-order explicit; Crank–Nicolson method — second-order implicit; Finite difference methods for hyperbolic PDEs like the wave equation: Lax–Friedrichs method — first-order explicit; Lax–Wendroff method — second-order explicit
The one-factor-at-a-time method, [1] also known as one-variable-at-a-time, OFAT, OF@T, OFaaT, OVAT, OV@T, OVaaT, or monothetic analysis is a method of designing experiments involving the testing of factors, or causes, one at a time instead of multiple factors simultaneously.