Search results
Results from the WOW.Com Content Network
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
Ludwig Boltzmann defined entropy as a measure of the number of possible microscopic states (microstates) of a system in thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties, which constitute the macrostate of the system. A useful illustration is the example of a sample of gas contained in a container.
There are multiple approaches to deriving the partition function. The following derivation follows the more powerful and general information-theoretic Jaynesian maximum entropy approach. According to the second law of thermodynamics, a system assumes a configuration of maximum entropy at thermodynamic equilibrium.
However, the equivalence between the thermodynamic definition of entropy and the Gibbs entropy is not general but instead an exclusive property of the generalized Boltzmann distribution. [ 2 ] Furthermore, it has been shown that the definitions of entropy in statistical mechanics is the only entropy that is equivalent to the classical ...
Although Boltzmann first linked entropy and probability in 1877, the relation was never expressed with a specific constant until Max Planck first introduced k, and gave a more precise value for it (1.346 × 10 −23 J/K, about 2.5% lower than today's figure), in his derivation of the law of black-body radiation in 1900–1901. [11]
In Hamiltonian mechanics, the Boltzmann equation is often written more generally as ^ [] = [], where L is the Liouville operator (there is an inconsistent definition between the Liouville operator as defined here and the one in the article linked) describing the evolution of a phase space volume and C is the collision operator.
Boltzmann's distribution is an exponential distribution. Boltzmann factor (vertical axis) as a function of temperature T for several energy differences ε i − ε j.. In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution [1]) is a probability distribution or probability measure that gives the probability that a system will be in a certain ...
The energy and entropy of unpolarized blackbody thermal radiation, is calculated using the spectral energy and entropy radiance expressions derived by Max Planck [63] using equilibrium statistical mechanics, = (), = ((+) (+) ()) where c is the speed of light, k is the Boltzmann constant, h is the Planck constant, ν is frequency ...