enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    There are two possibilities: if =, the spheres coincide, and the intersection is the entire sphere; if , the spheres are disjoint and the intersection is empty. When a is nonzero, the intersection lies in a vertical plane with this x-coordinate, which may intersect both of the spheres, be tangent to both spheres, or external to both spheres.

  3. Plane–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Planeplane_intersection

    The line of intersection between two planes ... (i.e. on their intersection), so insert this equation into each of the equations of the planes to get two ...

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Spheres

    The set of all spheres satisfying this equation is called a pencil of spheres determined by the original two spheres. In this definition a sphere is allowed to be a plane (infinite radius, center at infinity) and if both the original spheres are planes then all the spheres of the pencil are planes, otherwise there is only one plane (the radical ...

  5. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    1. No intersection. 2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways: No intersection at all; Intersection in exactly one point; Intersection in two points.

  6. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...

  7. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In plane (Euclidean) geometry, the basic concepts are points and (straight) lines. In spherical geometry, the basic concepts are point and great circle. However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry.

  8. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  9. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center. In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space R n + 1.