Search results
Results from the WOW.Com Content Network
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. [1]: xi QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.
Quantum field theory originated in the 1920s from the problem of creating a quantum mechanical theory of the electromagnetic field.In particular, de Broglie in 1924 introduced the idea of a wave description of elementary systems in the following way: "we proceed in this work from the assumption of the existence of a certain periodic phenomenon of a yet to be determined character, which is to ...
This is a list of quantum field theories. The first few sections are organized according to their matter content, that is, the types of fields appearing in the theory. This is just one of many ways to organize quantum field theories, but reflects the way the subject is taught pedagogically.
In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform.The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary ...
In quantum field theory n-dimensional integrals of the form (()) appear often. Here ℏ {\displaystyle \hbar } is the reduced Planck constant and f is a function with a positive minimum at q = q 0 {\displaystyle q=q_{0}} .
Indeed, the viewpoint of local quantum physics is in particular suitable to generalize the renormalization procedure to the theory of quantum fields developed on curved backgrounds. Several rigorous results concerning QFT in presence of a black hole have been obtained.
In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements.
In theoretical physics, quantum field theory in curved spacetime (QFTCS) [1] is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy ...