Search results
Results from the WOW.Com Content Network
24/7 Help. For premium support please call: 800-290-4726 more ways to ... This is an example, she points out, of neuroplasticity and how quickly the brain can change as a result of our behavior ...
This type of neuroplasticity often studies the effect of various internal or external stimuli on the brain's anatomical reorganization. The changes of grey matter proportion or the synaptic strength in the brain are considered as examples of structural neuroplasticity. Structural neuroplasticity is currently investigated more within the field ...
The hippocampus regulates memory function. Memory improvement is the act of enhancing one's memory. Factors motivating research on improving memory include conditions such as amnesia, age-related memory loss, people’s desire to enhance their memory, and the search to determine factors that impact memory and cognition.
For example, in certain neurodegenerative conditions, such as Alzheimer's disease, abnormal sprouting of neurons may contribute to the spread of the disease and further neuronal death. Therefore, while neural sprouting is an important form of neuroplasticity , it is a complex process that can have both positive and negative effects, depending ...
A study recently published in the journal Communications Psychology, for example, determined that cycling and high-intensity interval training (HIIT) were most likely to help boost memory ...
The brain does this by forming new connections between neurons and strengthening or weakening existing pathways—a process otherwise known as neuroplasticity. #4 Image credits: unbfacts
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. [1] Hence, it is the biological basis for learning and the formation of new memories.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...