enow.com Web Search

  1. Ad

    related to: amplitude calculation formula for wavelength

Search results

  1. Results from the WOW.Com Content Network
  2. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The concept of wavelength is most often applied to sinusoidal, or nearly sinusoidal, waves, because in a linear system the sinusoid is the unique shape that propagates with no shape change – just a phase change and potentially an amplitude change. [15] The wavelength (or alternatively wavenumber or wave vector) is a characterization of the ...

  3. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    (Oscillatory) displacement amplitude: Any quantity symbol typically subscripted with 0, m or max, or the capitalized letter (if displacement was in lower case). Here for generality A 0 is used and can be replaced. m [L] (Oscillatory) velocity amplitude V, v 0, v m. Here v 0 is used. m s −1 [L][T] −1 (Oscillatory) acceleration amplitude A, a ...

  4. Amplitude - Wikipedia

    en.wikipedia.org/wiki/Amplitude

    Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .

  5. Sine wave - Wikipedia

    en.wikipedia.org/wiki/Sine_wave

    Sine waves of arbitrary phase and amplitude are called sinusoids and have the general form: [1] = ⁡ (+) = ⁡ (+) where: A {\displaystyle A} , amplitude , the peak deviation of the function from zero.

  6. Wave vector - Wikipedia

    en.wikipedia.org/wiki/Wave_vector

    A is the amplitude of the wave (the peak magnitude of the oscillation), φ is a phase offset , ω is the (temporal) angular frequency of the wave, describing how many radians it traverses per unit of time, and related to the period T by the equation ω = 2 π T , {\displaystyle \omega ={\tfrac {2\pi }{T}},}

  7. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    That is, the sum and difference of two phases (in degrees) should be computed by the formulas [[+]] [[]] respectively. Thus, for example, the sum of phase angles 190° + 200° is 30° ( 190 + 200 = 390 , minus one full turn), and subtracting 50° from 30° gives a phase of 340° ( 30 − 50 = −20 , plus one full turn).

  8. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    But, for given amplitude (as noted above), the component of the Poynting vector in the y direction is proportional to the geometric factor cos θ and inversely proportional to the wave impedance Z. Applying these corrections to each wave, we obtain two ratios multiplying the square of the amplitude transmission coefficient:

  9. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency.

  1. Ad

    related to: amplitude calculation formula for wavelength