Search results
Results from the WOW.Com Content Network
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density . Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first ...
However, if the current is a time-varying function, I(t), this formula must be extended to reflect the fact that the current (and thus the instantaneous power) is varying over time. If the function is periodic (such as household AC power), it is still meaningful to discuss the average power dissipated over time, which is calculated by taking ...
The calculation of probability amplitudes in theoretical particle physics requires the use of large, complicated integrals over a large number of variables. Feynman diagrams instead represent these integrals graphically. Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula.
Different fields of application have different definitions for the term. All the meanings are very similar in concept: In chemistry, the transmission coefficient refers to a chemical reaction overcoming a potential barrier; in optics and telecommunications it is the amplitude of a wave transmitted through a medium or conductor to that of the incident wave; in quantum mechanics it is used to ...
(Oscillatory) displacement amplitude: Any quantity symbol typically subscripted with 0, m or max, or the capitalized letter (if displacement was in lower case). Here for generality A 0 is used and can be replaced. m [L] (Oscillatory) velocity amplitude V, v 0, v m. Here v 0 is used. m s −1 [L][T] −1 (Oscillatory) acceleration amplitude A, a ...
The following constraints on the wave function are sometimes explicitly formulated for the calculations and physical interpretation to make sense: [45] [46] The wave function must be square integrable. This is motivated by the Copenhagen interpretation of the wave function as a probability amplitude.
X-ray atomic form factors of oxygen (blue), chlorine (green), Cl − (magenta), and K + (red); smaller charge distributions have a wider form factor.. In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom.
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .