Search results
Results from the WOW.Com Content Network
If ρ is separable, it can be written as = In this case, the effect of the partial transposition is trivial: = () = As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite.
A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10] In this case one can say that a positive polynomial is a sum of weighted squares of rational functions with positive ...
Download as PDF; Printable version; In other projects ... move to sidebar hide. In mathematics, positive semidefinite may refer to: Positive semidefinite function ...
In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,
A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider
Uniqueness: for positive definite matrices Cholesky decomposition is unique. However, it is not unique in the positive semi-definite case. Comment: if is real and symmetric, has all real elements; Comment: An alternative is the LDL decomposition, which can avoid extracting square roots.
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form =, where is a unitary matrix and is a positive semi-definite Hermitian matrix (is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size.
The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation: