Search results
Results from the WOW.Com Content Network
Just another Gibbs sampler (JAGS) is a program for simulation from Bayesian hierarchical models using Markov chain Monte Carlo (MCMC), developed by Martyn Plummer. JAGS has been employed for statistical work in many fields, for example ecology, management, and genetics.
WinBUGS is statistical software for Bayesian analysis using Markov chain Monte Carlo (MCMC) methods. It is based on the BUGS ( B ayesian inference U sing G ibbs S ampling ) project started in 1989. It runs under Microsoft Windows , though it can also be run on Linux or Mac using Wine .
PyMC implements non-gradient-based and gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference and stochastic, gradient-based variational Bayesian methods for approximate Bayesian inference.
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.
If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]
In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology, introduced by Peter Green, which allows simulation (the creation of samples) of the posterior distribution on spaces of varying dimensions. [1]
Learn how to download and install or uninstall the Desktop Gold software and if your computer meets the system requirements.
The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is