enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  3. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    The splay tree is a form of binary search tree invented in 1985 by Daniel Sleator and Robert Tarjan on which the standard search tree operations run in (⁡ ()) amortized time. [10] It is conjectured to be dynamically optimal in the required sense. That is, a splay tree is believed to perform any sufficiently long access sequence X in time O ...

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.

  5. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  6. Random binary tree - Wikipedia

    en.wikipedia.org/wiki/Random_binary_tree

    Such a data structure is known as a treap or a randomized binary search tree. [11] Variants of the treap including the zip tree and zip-zip tree replace the tree rotations by "zipping" operations that split and merge trees, and that limit the number of random bits that need to be generated and stored alongside the keys.

  7. Predecessor problem - Wikipedia

    en.wikipedia.org/wiki/Predecessor_problem

    In the static predecessor problem, the set of elements does not change, but in the dynamic predecessor problem, insertions into and deletions from the set are allowed. [ 1 ] The predecessor problem is a simple case of the nearest neighbor problem, and data structures that solve it have applications in problems like integer sorting .

  8. Geometry of binary search trees - Wikipedia

    en.wikipedia.org/.../Geometry_of_binary_search_trees

    The cost of a search is modeled by assuming that the search tree algorithm has a single pointer into a binary search tree, which at the start of each search points to the root of the tree. The algorithm may then perform any sequence of the following operations: Move the pointer to its left child. Move the pointer to its right child.

  9. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.