Search results
Results from the WOW.Com Content Network
Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of. For example, +. 2.
Every graph is an intersection graph for some family of sets, and this family is called an intersection representation of the graph. The intersection number of a graph G is the minimum total number of elements in any intersection representation of G. interval 1. An interval graph is an intersection graph of intervals of a line. 2.
As well as being called the intersection number, the minimum number of these cliques has been called the R-content, [7] edge clique cover number, [4] or clique cover number. [8] The problem of computing the intersection number has been called the intersection number problem , [ 9 ] the intersection graph basis problem , [ 10 ] covering by ...
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
Re – real part of a complex number. [2] (Also written.) resp – respectively. RHS – right-hand side of an equation. rk – rank. (Also written as rank.) RMS, rms – root mean square. rng – non-unital ring. rot – rotor of a vector field. (Also written as curl.) rowsp – row space of a matrix. RTP – required to prove.
A × B = {(a,5), (a,6), (b,5), (b,6)}. where each element of A is paired with each element of B , and where each pair makes up one element of the output set. The number of values in each element of the resulting set is equal to the number of sets whose Cartesian product is being taken; 2 in this case.
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.
Modus ponens (or "the fundamental rule of inference" [15]) is often written as follows: The two terms on the left, P → Q and P, are called premises (by convention linked by a comma), the symbol ⊢ means "yields" (in the sense of logical deduction), and the term on the right is called the conclusion: P → Q, P ⊢ Q. For the modus ponens to ...